

Quality • Reliability • Innovation

ISO 9001 : 2000 CERTIFIED BY AFAQ No. QUAL / 1997 / 7034 a

COPPER TELECOMMUNICATION CABLES

N° QUAL/1997/7034a

LIBAN CABLES SAL

CONCEPTION, DEVELOPPEMENT, PRODUCTION ET COMMERCIALISATION DE FILS, CORDES ET CABLES NUS ET ISOLES : ELECTRIQUES (BASSE, MOYENNE ET HAUTE TENSION) ET DE TELECOMMUNICATION (A CONDUCTEUR CUIVRE ET A FIBRE OPTIQUE), LE TOUT A USAGE PUBLIC. DOMESTIQUE, INDUSTRIEL ET SPECIAL.

DESIGN, DEVELOPMENT, PRODUCTION AND MARKETING AND SALES OF WIRES, BARE AND INSULATED ROPES AND CABLES: ELECTRICAL (LOW, MEDIUM AND HIGH VOLTAGE) AND OF TELECOMMUNICATION (COPPER CONDUCTOR AND OPTICAL FIBER), FOR PUBLIC, DOMESTIC, INDUSTRIAL AND SPECIAL USE.

Siège social : Sanayeh Rue Justinien Immeuble CCI BP 11 6008 BEYROUTH LIBAN Usine: Nahr Ibrahim LIBAN

AFAC certifie que pour les activités et les sites référencés ci-dessus toutes les dispositions mises en couvre pour répondre aux exégences requises par la norme internationale :

AFAO certifies that all the arrangements covering the above mentioned activities and locations are established to meet the requirements of the international standard :

ISO 9001 : 2000

ont été examinées et jugões conformés. have been examined and found conform.

2003-02-06

(annés/mois/our)

If est validite (vegetav) A to regard where

2006-02-05

(veside or th/day)

Le Président du Comité de certification The Prepident of the Certification Committee

Le Directeur Général d'AFAO The Managing Director of AFAQ Le Représentant de l'Entreprise On Behalf of the Fice

a: BOULBOU

A. PIGEONNIER mate en vigenz (garle 1920) di marco di designime also testados, facili la la la lace de derindo de la finanzia e finanzi (garle 1920) di marco di 1920), las escalifestes, dissocia pe 1920 di se finanzi que de la finanzia e finanzi di prification, la departe, el appendo di secultarioni con periodi di se finanzia que de AND as signed in cost all results. I cost represent according to describe to construction to confidence in the extrement of the confidence in the confidence

APAR - 110, AUCKUS MESSTON BESANS - 6P 48 / E-1020A EMBASSE (TSSE STANCE

COPPER TELECOMMUNICATION CABLES

CONTENTS =

		Page
1	NOTICE	1
2	INTRODUCTION	2
3	QUALITY ASSURANCE	3
4	RECOMMENDED ORDERING PARAMETERS	3
5	OUR TYPE AND CODE DESIGNATION	4
6	DUCT, UNDERGROUND NETWORK CABLES USED IN FEEDER AND DISTRIBUTION	6
	6.1 - PE insulated, Petroleum jelly filled, PE sheathed	6
	6.2 - PE insulated, PE sheathed	9
7	DIRECT BURIAL, UNDERGROUND NETWORK CABLES USED IN FEEDER AND DISTRIBUTION	12
	7.1 - PE insulated, Petroleum jelly filled, double steel tape armoured, PE sheathed	12
	7.2 - PE insulated, double steel tape armoured, PE sheathed	15
8	FIGURE 8 AERIAL NETWORK CABLES USED IN DISTRIBUTION	18
	8.1 - PE insulated, Petroleum jelly filled, PE sheathed, with steel messenger	18
	8.2 - PE insulated, PE sheathed, with steel messenger	21
	8.3 - PE insulated, Petroleum jelly filled, double steel tape armoured, PE sheathed, with steel messenger	24
	8.4 - PE insulated, double steel tape armoured, PE sheathed, with steel messenger	27
9	INDOOR USE TELEPHONE CABLES, PVC INSULATED AND PVC SHEATHED	30
10	JUMPER WIRE	32
11	DROP WIRE	33
	ANNEX A-INDENTIFICATION OF CONDUCTORS AND UNITS AND CABLE CORE CONSTRUCTION OF UNDERGROUND AND AERIAL NETWORK CABLES	34
	ANNEX B - IDENTIFICATION OF CONDUCTORS OF INDOOR USE TELEPHONE CABLE - LIBTEL	36

As this catalogue is not intended to cover all of **LIBAN CABLES SAL** possibilities in Copper Telephone Cables manufacturing, the hereafter listing of the types of cables is not restrictive but only indicative of the main and most current types we manufacture.

On the other hand, our specification sheets are inspired mainly from International Electrotechnical Commission Specifications (IEC) only in order to conform with the sustained trend, noticed both regionally and worldwide, towards these same IEC supposed to inspire any further standardization approaches.

That is why, while consulting this brochure, it is important to keep in mind that:

- any combination or change of the constructional details mentioned in hereafter chapter 5 remains feasible, on base of special conception development, matching any special or different specifications,
- we can offer additional possibilities and alternatives like for example:
 - Pair, quad, and other basic formations
 - Unit or concentric stranding
 - Comparted construction (ex: MIC cables)
- our production encompasses all telecom cables of low, high or special mutual capacitance and conductor gauges ≥ 0.4 mm.

Finally, and within our policy of constant improvement, we reserve the right to alter any part of the information contained in this publication without incurring any obligation. In all cases this brochure being only indicatve, and unless expressly agreed upon, it cannot be considered by any mean as contractual document.

Devoted to the manufacturing of electric and telecom cables, Liban Cables is the first and largest supplier in Lebanon and a leader in the Middle-East region.

Liban Cables was founded in 1967 by a group of Lebanese industrialists backed up by the technical assistance of two international leading firms:

- Les Cables de Lyon France (became ALCATEL afterwards and NEXANS by end 2000)
- Phelps Dodge U.S.A.

Staffed with qualified engineers and highly skilled technicians, our plant is located in Nahr-Ibrahim at 30 Km from Beirut, where cables are designed and manufactured according to all international specifications: IEC, VDE, UTE, BS and others on customer request.

Early after its foundation, Liban Cables has become the major supplier of the Lebanese market in both the public and private sectors. The product range of Liban Cables covers all Copper and Aluminium electric cables, as well as copper and fiber optic communication cables, in addition to a wide variety of special cables manufactured on customer request.

High quality cables, continuous developments of the production range, direct and fast shipments have contributed in rendering Liban Cables an important exporter for many countries on the three limitrophe continents (Asia, Europe, Africa). Liban Cables products are particularly appreciated by administrations and international contractors operating in the region and seeking reliable and direct supplies of power and communication cables.

Step by step, from raw material to final product, quality constitutes a major concern to Liban Cables.

Raw material are continuously and repetitively tested from trial orders till the last batch received afterwards.

Products are tested within two simultaneous procedures:

- A built in quality control system carried out by the production itself at any step of work in process.
- A parallel and contradictory procedure is also carried out on the same stages and products by independent inspectors reporting to the quality control service.

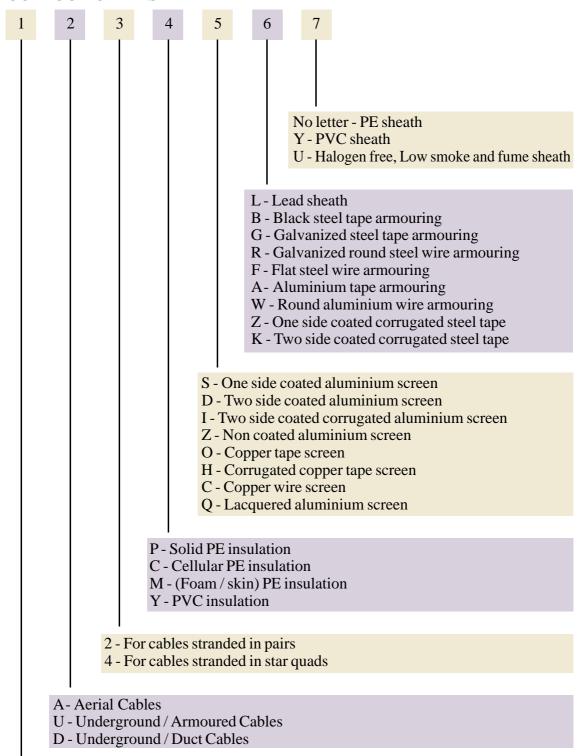
End users and/or third part inspection authorities are also constantly commissioning the finished products and assessing the strict conformity to ordered specifications.

In fact, our ISO 9001 certification stated in Feb 1997 by the International Certification Network (EQNET) is certified by the French Association for Quality Assurance (AFAQ), the well known rigourous and independant accredited European assessor. This certification, which upgraded to ISO 9001:2000 on February 2003, under reference AFAQ N° QUAL / 1997 / 7034 a, confirms the soundness and the performance of the Quality System we apply for the Design, the Development, the Manufacturing and the Marketing & Sales of all our products.

RECOMMENDED ORDERING PARAMETERS

For prompt quotation / supplies, please make sure your inquiries and your orders are securing the following data:

- 1 International or Special Standard. (Alternatively, the precise usage of the cable.)
- 2 Constructional details (Materials, Pairs / Quads, Mutual Capacitance, Filling,


Screens, Armour, Messenger ...etc).

- 3 Other requirements
- 4 Packing & Tolerances
- 5 Required delivery time
- 6 Required validity

SOUR TYPE AND CODE DESIGNATION

The type designation is a combination of symbols (letters and numbers) indicating the type, and the main constructional elements of the cable as follows:

OUTDOOR CABLES

Example:

TU2MDG - Telephone cable, underground, pair Type, foam / skin PE insulated, two side coated Aluminium screened, galvanized steel tape armoured.

N.B.: The sequence of the 3rd and 4th characters indicates whether the cable is jelly filled or not. For jelly filled cables, these two characters are interchanged, i.e. the letter indicating the type of insulation (P,C,M or T) comes before the number indicating the type of stranding (2 or 4).

Examples:

TUM2DG - Telephone cable, underground, foam / skin PE insulated, pair Type, jelly filled, two side coated Aluminium screened, galvanized steel tape armoured.

TU2MDG - Same cable but not jelly filled.

INDOOR CABLES

LIBTEL for unscreened PVC insulated and sheathed cables LIBTLV for tinned copper conductor, PVC insulated and sheathed cables for screened, PVC insulated and sheathed cables LIBTLS LIBTLA

for armoured, PVC insulated and sheathed cables

DUCTUNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION (FILLED)

- 6.1 polyethylene insulated
 - longitudinally watertight
 - polyethylene sheathed

Specification:

Based on IEC 60708-1 and 60708-2

Type and Application

Our type TDM2D Pulling in duct

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.6 or 0.8 mm nominal diameter. Other wire diameters are also available.

Insulation

One layer of fully coloured solid polyethylene, or one layer of colourless cellular polyethylene covered by a thin layer of fully coloured solid polyethylene (foam-skin).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair. Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Longitudinal watertightness

The cable core interstices are filled with a suitable compound (petroleum jelly) to avoid longitudinal water penetration inside the cable.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Sheath

Black, high, medium or low density polyethylene.

Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as requested).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable.

	Individual value	e (pF)	95% values (pF)		
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm	
Pair-to-pair	250	160	150	100	
Side-to-side	800	500	500	300	
Pair-to-earth		1700		1000	
Side-to-earth		1700		1000	

Maximum calculated attenuation at 800 Hz and 20°C

 \emptyset 0.4 mm 1.79 dB/km

ø 0.5 mm 1.43 dB/km

ø 0.6 mm 1.19 dB/km

ø 0.8 mm 0.90 dB/km

DUCT UNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION

Foam-skin Polyethylene insulated - Petroleum Jelly filled - Polyethylene sheathed (maximum average mutual capacitance 55 nF/Km)

Nominal number of pairs	Nominal Conductor diameter (mm)	Usual number of spare pairs	Approx. cable core diameter (mm)	Nominal sheath thickness (mm)	Approx. nominal outer diameter (mm)	Nominal lineic weight (Kg/Km)	Usual nominal delivery length (m)
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1200 1500 1800 2100 2400 2700 3000	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20 24 30 36 44 48 54 60	5 6 8 10 12 14 17 20 24 28 31 34 39 41 43 47 53 58 63 67 71 75	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 1.8 2.0 2.0 2.5 2.5 2.5 2.8 2.8 3.2 3.5 3.5 3.5	9 10 11 14 15 18 21 24 29 32 36 39 44 46 49 53 59 64 69 73 77 81	82 120 161 239 315 434 630 824 1195 1556 1921 2282 2987 3364 3712 4411 5483 6567 7626 8663 9697 10729	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000 1200 1500 1800 2100	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20 24 30 36 42	6 8 10 12 14 17 21 24 30 34 38 42 48 51 54 59 66 72 78	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8 2.8 2.8 3.2 3.5 3.5	10 12 13 16 18 21 25 29 34 39 43 47 53 57 60 65 72 78	108 165 226 344 458 645 939 1224 1787 2352 2897 3469 4553 5129 5666 6732 8348 10011 11609	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500 600 800	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0 0 0 1 1 2 3 4 6 8 10 12 16	7 9 11 15 17 21 25 29 35 41 46 50 58	1.5 1.5 1.5 1.5 1.8 1.8 1.8 2.0 2.5 2.5 2.8 3.2	11 13 15 18 21 25 30 33 40 46 51 55 63	139 218 302 467 639 894 1297 1707 2507 3315 4088 4860 6444	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 0 1 1 2 3 4 6 8 10	9 12 15 20 23 28 34 39 48 55 61	1.5 1.5 1.5 1.8 1.8 2.0 2.5 2.8 2.8 3.2	13 16 19 23 28 32 38 43 52 60 67	210 348 507 793 1081 1521 2240 2944 4355 5763 7158	1000 1000 1000 1000 1000 1000 500 500 50

^{*} Other conductor gauges, mutual capacitances, different pair count cables and different delivery lengths are also available

DUCTUNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION (AIRCORE)

- 6.2 polyethylene insulated
 - polyethylene sheathed

Specification:

Based on IEC 60708-1 and 60708-3

Type and Application

Our type TD2PD Pulling in duct

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.6 or 0.8 mm nominal diameter. Other wire diameters are also available.

Insulation

Fully coloured **solid** (or foam skin when specified) polyethylene.

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap.

Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Sheath

Black, high, medium or low density polyethylene.

Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as requested).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 1 kv

Between conductors and screen: 3 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable.

	Individual value	e (pF)	95% values (pF)		
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm	
Pair-to-pair	250	160	150	100	
Side-to-side	800	500	500	300	
Pair-to-earth		1700		1000	
Side-to-earth		1700		1000	

Maximum calculated attenuation at 800 Hz and 20°C

Ø 0.4 mm 1.79 dB/kmØ 0.5 mm 1.43 dB/kmØ 0.6 mm 1.19 dB/km

ø 0.8 mm 0.90 dB/km

DUCT UNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION

Solid PE insulated - PE sheathed (maximum average mutual capacitance 55 nF/Km)

Nominal number of pairs	Nominal Conductor diameter (mm)	Usual number of spare pairs	Approx. cable core diameter (mm)	Nominal sheath thickness (mm)	Approx. nominal outer diameter (mm)	Nominal lineic weight (Kg/Km)	Usual nominal delivery length (m)
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000 1200 1500 1800 2100 2400 2700 3000	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 1 2 3 4 6 8 10 12 16 18 20 24 30 36 42 48 54 60	5 6 8 10 12 14 17 20 24 27 31 34 39 41 43 47 53 58 63 67 71 75	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.8 3.2 3.2 3.5 3.5 3.5	9 10 11 13 15 17 21 23 28 31 35 38 43 46 48 52 58 63 68 72 76 80	71 107 143 211 278 380 548 708 1034 1358 1703 2016 2639 2961 3264 3873 4819 5777 6731 7645 8556 9466	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000 1200 1500	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20 24 30	6 8 10 12 15 17 21 24 30 35 39 42 49 52 54 60 66	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8 2.8 3.2	10 11 13 16 18 21 25 28 34 39 43 47 53 57 60 65 72	94 147 201 305 406 561 829 1074 1582 2093 2577 3073 4033 4541 5015 5959 7414	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000 1200	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20 24	7 9 11 15 17 21 25 29 36 41 46 50 58 61 65 71	1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.5 2.8 3.2 3.2 3.2	11 13 15 18 21 25 29 33 40 46 51 55 63 67 70 76	119 194 269 416 558 782 1143 1505 2238 2944 3633 4353 5722 6438 7115 8462	1000 1000 1000 1000 1000 1000 1000 500 5
10 20 30 50 70 100 150 200 300 400 500 600	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 0 1 1 2 3 4 6 8 10 12	10 12 15 19 23 27 34 39 47 55 61 68	1.5 1.5 1.5 1.8 1.8 2.0 2.5 2.8 2.8 3.2 3.5	13 16 19 23 27 31 38 43 52 60 67 73	178 305 431 678 929 1313 1963 2574 3790 5019 6249 7437	1000 1000 1000 1000 1000 1000 500 500 50

^{*} Other conductor gauges, mutual capacitances, different pair count cables and different delivery lengths are also available

DIRECT BURIALUNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION (FILLED)

- 7.1 **polyethylene insulated**
 - **■** longitudinally watertight
 - double steel tape armoured
 - polyethylene sheathed

Specification:

Based on IEC 60708-1 and 60708-2

Type and Application

Our type TUM2DG Directly buried

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.6 or 0.8 mm nominal diameter. Other wire diameters are also available.

Insulation

One layer of fully coloured **solid** polyethylene or one layer of colourless **cellular** polyethylene covered by a thin layer of fully coloured **solid** polyethylene (**foam-skin**).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Longitudinal watertightness

The cable core interstices are filled with a suitable compound (petroleum jelly) to avoid longitudinal water penetration inside the cable.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap.

Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Innersheath

Colourless or black high (or low when specified) density polyethylene.

Nominal radial thickness: as requested or as per the physical characteristics table.

Armour

Double steel tape helically laid on a crepe paper bedding (facultative).

The nominal thickness of each tape is 0.2 mm or 0.5 mm (see the physical characteristics table).

Outersheath

Black low density polyethylene. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as requested).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km	
0.4	288.0	300.0	
0.5	184.2	191.8	
0.6	127.8	133.2	
0.65	106.0	114.0	
0.8	70.6	73.6	
0.9	56.0	60.0	
1.2	30.0	32.0	

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable.

	Individual value	e (pF)	95% values (pF)		
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm	
Pair-to-pair	250	160	150	100	
Side-to-side	800	500	500	300	
Pair-to-earth		1700		1000	
Side-to-earth		1700		1000	

Maximum calculated attenuation at 800 Hz and 20°C

ø 0.4 mm 1.79 dB/km

ø 0.5 mm 1.43 dB/km ø 0.6 mm 1.19 dB/km

ø 0.8 mm 0.90 dB/km

DIRECT BURIAL UNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION

Foam-skin Polyethylene insulated - Petroleum Jelly filled Double steel tape armoured - Polyethylene sheathed (maximum average mutual capacitance 55 nF/Km)

Number of	Nominal Conductor	Usual number	Approx. cable core	Steel tape thickness	Nomina	l sheath kness	Approx. nominal outer	Nominal lineic	Usual nominal delivery
pairs	diameter (mm)	of spare pairs	diameter (mm)	(mm)	inner (mm)	outer (mm)	diameter (mm)	weight (Kg/Km)	length (m)
10 20 30 50 70 100 150 200 300 400 500 600 800 900	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4 6 8 10 12 16 18	5 6 8 10 12 14 17 20 24 28 31 34 39 41	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8	12 14 15 17 19 22 25 28 32 37 43 46 51	188 241 296 397 505 646 876 1091 1522 1991 2913 3347 4186 4630	1000 1000 1000 1000 1000 1000 500 500 50
1000 1200 10	0.4 0.4 0.5	20 24 0	43 47 6	0.5 0.5 0.2	2.5 2.8 1.5	2.8 2.8 1.5	56 61 14	5034 5881 227	300 300 1000
20 30 50 70 100 150 200 300 400 500 600 800 900 1000	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 1 1 2 3 4 6 8 10 12 16 18 20	8 10 12 14 17 21 24 30 34 38 42 48 51 64	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8 3.2	1.5 1.5 1.5 1.5 1.8 1.8 1.8 2.0 2.5 2.5 2.8 3.2 3.2 3.5	15 17 20 22 25 30 33 40 47 51 55 62 65 68	301 381 534 681 894 1241 1562 2250 3433 4081 4755 6047 6685 7294	1000 1000 1000 1000 1000 500 500 500 500
10 20 30 50 70 100 150 200 300 400 500 600 800	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0 0 1 1 2 3 4 6 8 10 12	7 9 11 15 17 21 25 29 35 41 46 50 58	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8 3.2	1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.8 2.8 3.2 3.5	15 17 19 22 25 29 34 39 48 54 59 64 72	270 370 482 682 888 1191 1645 2161 3617 4573 5510 6396 8215	1000 1000 1000 1000 1000 1000 500 500 50
10 20 30 50 70 100 150 200 300 400 500	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 1 1 2 3 4 6 8	10 12 15 20 23 28 34 39 47 55 61	0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5	1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.8 3.2	1.5 1.5 1.5 1.8 1.8 2.0 2.5 2.5 2.8 3.2 3.5	17 20 23 28 32 37 46 51 61 68 75	364 548 724 1065 1404 1957 3302 4142 5823 7408 9001	1000 1000 1000 1000 1000 500 500 500 500

^{*} Other conductor gauges, mutual capacitances, different pair count cables and different delivery lengths are also available

DIRECTBURIALUNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION (AIRCORE)

- 7.2 **polyethylene insulated**
 - double steel tape armoured
 - polyethylene sheathed

Specification:

Based on IEC 60708-1 and 60708-3

Type and Application

Our type TU2PDG Directly buried

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.6 or 0.8 mm nominal diameter. Other wire diameters are also available.

Insulation

Fully coloured **solid** (or foam skin when specified) polyethylene.

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Inner sheath

Colourless or black high (or low when

specified) density polyethylene. Nominal radial thickness: as requested or as per the physical characteristics table.

Armour

Double steel tape helically laid on a crepe paper bedding (facultative).

The nominal thickness of each tape is 0.2 mm or 0.5 mm (see the physical characteristics table).

Outer sheath

Black low density polyethylene. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as requested).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 1 kv

Between conductors and screen: 3 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at $800~\mathrm{Hz}$ in pF per $500~\mathrm{meters}$ length of cable.

	Individual value	e (pF)	95% values (pF)		
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm	
Pair-to-pair	250	160	150	100	
Side-to-side	800	500	500	300	
Pair-to-earth		1700		1000	
Side-to-earth		1700		1000	

Maximum calculated attenuation at 800 Hz and 20°C

Ø 0.4 mm 1.79 dB/km
 Ø 0.5 mm 1.43 dB/km
 Ø 0.6 mm 1.19 dB/km
 Ø 0.8 mm 0.90 dB/km

DIRECT BURIAL UNDERGROUND NETWORK CABLE USED IN FEEDER AND DISTRIBUTION

Solid Polyethylene insulated - Double steel tape armoured - Polyethylene sheathed (maximum average mutual capacitance $55\,\mathrm{nF/Km}$)

Number of	Nominal Conductor			Steel tape thickness		l sheath kness	Approx. nominal outer	Nominal lineic	Usual nominal delivery
pairs	diameter (mm)	of spare pairs	diameter (mm)	(mm)	inner (mm)	outer (mm)	diameter (mm)	weight (Kg/Km)	length (m)
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000 1200	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20 24	5 6 8 10 12 14 17 19 24 27 31 34 39 41 43 47	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.5 2.8	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8 1.8 2.0 2.0 2.5 2.5 2.5 2.8	12 14 15 18 19 22 25 27 32 37 43 46 51 54 56 61	177 227 277 380 467 594 805 995 1382 1809 2704 3092 3846 4250 4612 5369	1000 1000 1000 1000 1000 1000 500 500 50
10 20 30 50 70 100 150 200 300 400 500 600 800 900 1000	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4 6 8 10 12 16 18 20	6 8 10 12 14 17 21 24 30 35 39 42 49 52 54	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0 2.0 2.5 2.5 2.8 2.8	1.5 1.5 1.5 1.5 1.8 1.8 1.8 2.0 2.5 2.5 2.8 3.2 3.2 3.5	13 15 17 20 22 25 30 33 42 47 51 55 62 65 68	213 283 356 503 629 822 1145 1428 2542 3191 3778 4392 5563 6135 6682	1000 1000 1000 1000 1000 1000 500 500 50
10 20 30 50 70 100 150 200 300 400 500 600 800	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0 0 0 1 1 2 3 4 6 8 10 12	7 9 11 15 17 21 25 29 36 41 46 50 58	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 2.8 3.5 68 6682 0.2 1.5 1.5 15 250 0.2 1.5 1.5 17 347 0.2 1.5 1.5 19 456 0.2 1.5 1.5 22 639 0.2 1.5 1.8 25 818 0.2 1.8 1.8 29 1093 0.2 1.8 2.0 34 1504 0.2 2.0 2.0 41 2457 0.5 2.0 2.5 48 3367 0.5 2.5 2.8 54 4238 0.5 2.5 2.8 59 5091 0.5 2.8 3.2 64 5913		347 456 639 818 1093 1504 2457 3367 4238 5091	1000 1000 1000 1000 1000 1000 1000 500 5	
10 20 30 50 70 100 150 200 300 400 500	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0 0 0 1 1 2 3 4 6 8 10	9 12 15 19 23 27 34 39 47 55 61	0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5	1.5 1.5 1.5 1.8 1.8 2.0 2.5 2.8 2.8 3.2	1.5 1.5 1.5 1.8 1.8 2.0 2.5 2.5 2.8 3.2 3.5	17 20 23 27 31 37 46 51 61 68 75	332 503 660 963 1267 1766 3038 3786 5290 6701 8108	1000 1000 1000 1000 1000 500 500 500 500

 $^{{\}color{red}\star}\ O ther\ conductor\ gauges, mutual\ capacitances, different\ pair\ count\ cables\ and\ different\ delivery\ lengths\ are\ also\ available$

AERIALNETWORK CABLE USED IN DISTRIBUTION (FILLED)

- 8.1 polyethylene insulated
 - longitudinally watertight
 - polyethylene sheathed
 - steel messenger

Specification:

Based on IEC 60708-1 and 60708-4

Type and Application

Our type TAM2D

Self-supported aerial laying

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.65 or 0.9 mm nominal diameter. Other wire diameters are also available.

Insulation

One layer of fully coloured **solid** polyethylene or one layer of colourless **cellular** polyethylene covered by a thin layer of fully coloured **solid** polyethylene (**foam-skin**).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a **pair**. Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Longitudinal watertightness

The cable core interstices are filled with a suitable compound (petroleum jelly) to avoid longitudinal water penetration inside the cable.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere

coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Messenger

One strand of galvanized steel wires. Diameter of wires, number of wires and minimum breaking strength: as requested or as per the physical characteristics table.

Sheath

Black, high, medium or low density, figure 8 shaped polyethylene including the cable core and the messenger. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as required).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable.

	Individual value	e (pF)	95% values (pF)			
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm		
Pair-to-pair	250	160	150	100		
Side-to-side	800	500	500	300		
Pair-to-earth		1700		1000		
Side-to-earth		1700		1000		

Maximum calculated attenuation at 800 Hz and 20°C

AERIAL NETWORK CABLE USED IN DISTRIBUTION

Foam skin Polyethylene insulated - Petroleum jelly filled Polyethylene sheathed - Steel messenger (maximum average mutual capacitance 55 nF/Km)

Nominal number of	Nominal Conductor diameter	Usual number of spare	Approx. cable core diameter	Nominal sheath thickness		enger Mini. break	Nom. outer dimension hght. X dia.	Nominal lineic weight	Usual nominal delivery
pairs	(mm)	pairs	(mm)	(mm)	(mm)	load (daN)	(mm)	(Kg/Km)	length (m)
10 20 30 50 70 100 150	0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3	5 6 7 10 11 14 17	1.5 1.5 1.5 1.5 1.5 1.5	7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6	670 670 1190 1190 1190 1190 2110	16 X 8.0 18 X 9.5 20 X 10.9 22 X 13.0 24 X 14.7 26 X 16.9 30 X 19.8	136 177 252 330 404 515 760	1000 1000 1000 1000 1000 1000 1000
200 10 20 30 50 70 100 150 200	0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	4 0 0 0 1 1 2 3 4	19 6 8 9 12 14 17 20 23	1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8	7 X 1.6 7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	2110 670 670 1190 1190 1190 1190 2110 2110	34 X 23 17 X 8.9 19 X 10.8 22 X 12.4 24 X 15.1 26 X 17.1 29 X 19.7 35 X 25 38 X 28	965 158 220 309 426 530 695 1060 1320	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.65 0.65 0.65 0.65 0.65 0.65 0.65	0 0 0 1 1 2 3 4	7 10 12 16 18 22 27 31	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 1.6	1190 1190 1190 1190 2110 2110 2110 2110	20 X 10.0 22 X 13.2 25 X 15.4 28 X 19.0 32 X 22 37 X 26 42 X 31 47 X 36	240 336 431 625 865 1170 1640 2110	1000 1000 1000 1000 1000 600 600 600
10 20 30 50 70 100 150	0.9 0.9 0.9 0.9 0.9 0.9	0 0 0 1 1 2 3	10 13 16 21 25 30 36	1.5 1.5 1.5 1.8 1.8 2.0 2.0	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 2.0	1190 1190 1190 2110 2110 2110 3300	22 X 13.1 26 X 16.4 29 X 19.5 36 X 25 40 X 29 45 X 34 53 X 41	330 505 680 1120 1460 1990 2930	1000 600 600 600 600 600 600

^{*} Other conductor gauges, mutual capacitances, different pair count cables and different delivery lengths are also available

Typical conditions of laying:

Maximal distance between the supports (span): 50 m.

Nominal sag for a 50 m span at 15°C without overload: 0.66 m.

security coefficient > 3 in the following extreme climatic conditions:

Hypothesis A: 100 km/h wind speed (pressure: 480 pa) at 15°C.

Hypothesis B: 60 km/h wind speed (pressure: 180 pa) - 10°C without ice.

security coefficient > 2 in the following extreme climatic conditions:

Hypothesis C: ice sleeve of 5 mm thickness at - 10°C without wind.

AERIALNETWORK CABLE USED IN DISTRIBUTION (AIRCORE)

- 8.2 polyethylene insulated
 - polyethylene sheathed
 - **■** steel messenger

Specification:

Based on IEC 60708-1 and 60708-4

Type and Application

Our type TA2MD

Self-supported aerial laying

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.65 or 0.9 mm nominal diameter. Other wire diameters are also available.

Insulation

One layer of fully coloured **solid** polyethylene or one layer of colourless **cellular** polyethylene covered by a thin layer of fully coloured **solid** polyethylene (**foam-skin**).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Messenger

One strand of galvanized steel wires. Diameter of wires, number of wires and minimum breaking strength: as requested or as per the physical characteristics table.

Sheath

Black, high, medium or low density, figure 8 shaped polyethylene including the cable core and the messenger. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as required).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable.

	Individual value	e (pF)	95% values (pF)			
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm		
Pair-to-pair	250	160	150	100		
Side-to-side	800	500	500	300		
Pair-to-earth		1700		1000		
Side-to-earth		1700		1000		

Maximum calculated attenuation at 800 Hz and 20°C

AERIAL NETWORK CABLE USED IN DISTRIBUTION

Foam skin Polyethylene insulated - Polyethylene sheathed - Steel messenger (maximum average mutual capacitance 55 nF/Km)

	Nominal Conductor	Usual	Approx. cable core	Nominal sheath		enger	Nom. outer	Nominal lineic	Usual nominal
of pairs	diameter (mm)	of spare pairs	diameter (mm)	thickness (mm)	Dim. Nbr.X dia. (mm)	Mini. break load (daN)	dimension hght. X dia. (mm)	weight (Kg/Km)	delivery length (m)
10 20 30 50 70 100 150 200	0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4	5 6 7 10 11 13 16	1.5 1.5 1.5 1.5 1.5 1.5 1.5	7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	670 670 1190 1190 1190 1190 2110 2110	16 X 8.0 18 X 9.4 20 X 10.7 22 X 12.9 24 X 14.6 26 X 16.7 30 X 19.6 33 X 23	129 166 234 306 370 466 680 840	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4	5 7 8 11 13 15 19 21	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	670 670 1190 1190 1190 1190 2110 2110	17 X 8.6 19 X 10.3 21 X 11.7 23 X 14.1 25 X 16.1 28 X 18.5 32 X 22 36 X 26	148 198 280 378 472 610 895 1140	1000 1000 1000 1000 1000 1000 1000
10 20 30 50 70 100 150 200	0.65 0.65 0.65 0.65 0.65 0.65 0.65	0 0 0 1 1 2 3 4	6 9 10 13 16 19 23 27	1.5 1.5 1.5 1.5 1.5 1.8 1.8	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 1.6	1190 1190 1190 1190 2110 2110 2110 2110	19 X 9.8 21 X 11.9 23 X 13.9 26 X 16.8 30 X 19.2 34 X 23 38 X 28 42 X 31	216 295 373 530 740 995 1370 1730	1000 1000 1000 1000 1000 600 600 600
10 20 30 50 70 100 150	0.9 0.9 0.9 0.9 0.9 0.9	0 0 0 1 1 2 3	9 12 14 19 22 26 32	1.5 1.5 1.5 1.5 1.8 1.8	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 2.0	1190 1190 1190 2110 2110 2110 3300	21 X 12.1 24 X 15 27 X 17.6 32 X 22 37 X 26 41 X 31 48 X 37	291 440 585 940 1250 1680 2470	1000 600 600 600 600 600

 $^{{\}color{red} \star} \ O ther \ conductor \ gauges, \ mutual \ capacitances, \ different \ pair \ count \ cables \ and \ different \ delivery \ lengths \ are \ also \ available$

Typical conditions of laying:

Maximal distance between the supports (span): 50 m.

Nominal sag for a 50 m span at 15°C without overload: 0.66 m.

security coefficient > 3 in the following extreme climatic conditions:

Hypothesis A: 100 km/h wind speed (pressure: 480 pa) at 15°C.

Hypothesis B: 60 km/h wind speed (pressure: 180 pa) - 10°C without ice.

security coefficient > 2 in the following extreme climatic conditions:

Hypothesis C: ice sleeve of 5 mm thickness at - 10°C without wind.

AERIALNETWORK CABLE USED IN DISTRIBUTION (FILLED)

8.3 polyethylene insulated

- **■** longitudinally watertight
- double steel tape armoured
- polyethylene sheathed
- **■** steel messenger

Specification:

Based on IEC 60708-1 and 60708-2

Type and Application

Our type TAM2DG

Self-supported aerial laying

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.65 or 0.9 mm nominal diameter. other wire diameters are also available.

Insulation

One layer of fully coloured **solid** polyethylene or one layer of colourless **cellular** polyethylene covered by a thin layer of fully coloured **solid** polyethylene (**foam-skin**).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Longitudinal watertightness

The cable core interstices are filled with a suitable compound (petroleum jelly) to avoid longitudinal water penetration inside the cable.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Innersheath

Colourless or black high (or low when specified) density polyethylene.

Nominal radial thickness: as requested or as per the physical characteristics table.

Armour

Double steel tape helically laid on a crepe paper bedding (facultative).

The nominal thickness of each tape is 0.2 mm or 0.5 mm.

Outer sheath

Black low density polyethylene. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as required).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \text{ M}\Omega$.km.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable

	Individual value	e (pF)	95% values (pF)		
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm	
Pair-to-pair	250	160	150	100	
Side-to-side	800	500	500	300	
Pair-to-earth		1700		1000	
Side-to-earth		1700		1000	

Maximum calculated attenuation at 800 Hz and 20°C

AERIAL NETWORK CABLE USED IN DISTRIBUTION

Foam skin Polyethylene insulated - Petroleum jelly filled - Double steel tape armoured Polyethylene sheathed - Steel messenger (maximum average mutual capacitance 55 nF/Km)

Nominal	Nominal Conductor	Usual	Approx. cable core	she	ninal ath		enger	Nom. outer	Nominal lineic	Usual nominal
of pairs	diameter (mm)	of spare pairs	diameter (mm)	thick (m Inner	,	Nbr.X dia.	Mini. break load (daN)	hght. X dia. (mm)	weight (Kg/Km)	delivery length (m)
10 20 30 50 70 100 150 200	0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4	5 6 8 10 11 14 17	1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	1190 1190 1190 1190 1190 1190 2110 2110	21 X 12.2 23 X 13.7 24 X 14.9 26 X 17.1 28 X 18.7 30 X 21 35 X 25 39 X 28	295 354 407 515 610 745 1060 1300	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4	6 8 9 12 14 17 20 23	1.5 1.5 1.5 1.5 1.5 1.5 1.8	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 1.6	1190 1190 1190 1190 2110 2110 2110 2110	22 X 13.0 21 X 14.9 26 X 16.5 28 X 19.1 32 X 22 35 X 25 40 X 29 43 X 33	325 408 485 635 830 1050 1410 1740	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.65 0.65 0.65 0.65 0.65 0.65 0.65	0 0 0 1 1 2 3 4	7 10 12 16 19 22 27 31	1.5 1.5 1.5 1.5 1.5 1.8 1.8 2.0	1.5 1.5 1.5 1.8 1.8 2.0 2.0	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 1.6	1190 1190 1190 1190 2110 2110 2110 2110	24 X 14.7 27 X 17.3 29 X 19.4 33 X 24 37 X 27 42 X 31 47 X 36 52 X 41	393 525 645 915 1190 1550 2100 2630	1000 1000 1000 1000 1000 600 600 600
10 20 30 50 70 100 150	0.9 0.9 0.9 0.9 0.9 0.9	0 0 0 1 1 2 3	10 13 16 21 25 30 36	1.5 1.5 1.5 1.8 1.8 2.0 2.0	1.5 1.5 1.8 1.8 2.0 2.0 2.5	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 2.0	1190 1190 1190 2110 2110 2110 3300	26 X 17.1 30 X 21 34 X 25 40 X 30 45 X 34 50 X 39 60 X 47	515 735 970 1480 1900 2500 3610	1000 600 600 600 600 600

 $^{{\}color{red}\star}\ O ther\ conductor\ gauges,\ mutual\ capacitances,\ different\ pair\ count\ cables\ and\ different\ delivery\ lengths\ are\ also\ available$

Typical conditions of laying:

Maximal distance between the supports (span): 50 m.

Nominal sag for a 50 m span at 15°C without overload: 0.66 m.

security coefficient > 3 in the following extreme climatic conditions:

Hypothesis A: 100 km/h wind speed (pressure: 480 pa) at 15°C.

Hypothesis B: 60 km/h wind speed (pressure: 180 pa) - 10°C without ice.

security coefficient > 2 in the following extreme climatic conditions:

Hypothesis C: ice sleeve of 5 mm thickness at - 10°C without wind.

AERIALNETWORK CABLE USED IN DISTRIBUTION (AIRCORE)

- 8.3 polyethylene insulated
 - double steel tape armoured
 - polyethylene sheathed
 - **■** steel messenger

Specification:

Based on IEC 60708-1 and 60708-3

Type and Application

Our type TA2MDG

Self-supported aerial laying

CONSTRUCTION

Conductors

Solid annealed bare copper wire of: 0.4 - 0.5 - 0.65 or 0.9 mm nominal diameter.

Insulation

One layer of fully coloured **solid** polyethylene or one layer of colourless **cellular** polyethylene covered by a thin layer of fully coloured **solid** polyethylene (**foam-skin**).

Radial thickness determined to satisfy the electrical characteristics.

Twisting

2 conductors are twisted into a pair.

Different twisting laylengths are used to minimize crosstalk.

Quad cables are available upon request.

Stranding

In sub-units of 10 pairs, for units of 50 or 100 pairs and for cables of up to 100 pairs. In units of 50 or 100 pairs for cables of more than 100 pairs.

Other repartition also available.

Spare pairs

Located within the units or between the units of the outer layer of the cable core, they are used to replace the pairs damaged during the manufacturing process.

Cable core construction, identification of conductors and units: see annex A.

Cable core protection

One or more tapes helically or longitudinally laid with an overlap.

Continuity wire (when specified)

One 0.5 mm diameter tinned copper wire is longitudinally laid to ensure the electrical continuity of the screen.

Moisture barrierand screen

One or two side ethylene copolymere coated smooth aluminium tape is longitudinally laid with an overlap. Nominal thickness of aluminium: 0.15 mm. Different or corrugated screen also available.

Inner sheath

Colourless or black high (or low when specified) density polyethylene.

Nominal radial thickness: as requested or as per the physical characteristics table.

Armour

Double steel tape helically laid on a crepe paper bedding (facultative).

The nominal thickness of each tape is 0.2 mm or 0.5 mm

Outersheath

Black low density polyethylene. Nominal radial thickness: as requested or as per the physical characteristics table.

- manufacturer's identification
- number of pairs and conductor diameter
- sequentially numbered length marking at each meter interval (or as required).

Loop resistance at 20°C in direct current

Diameter mm	Nominal value Ω/km	Maximum individual value Ω/km
0.4	288.0	300.0
0.5	184.2	191.8
0.6	127.8	133.2
0.65	106.0	114.0
0.8	70.6	73.6
0.9	56.0	60.0
1.2	30.0	32.0

Dielectric strength during 1 mn in direct current*

Between conductors: 0.5 kv

Between conductors and screen: 1 kv

* the test can be achieved under alternative current with half of above voltages.

Insulation resistance under 200 V minimum direct current

Lowest value after 2 mn minimum : $5000 \,\mathrm{M}\Omega.\mathrm{km}$.

Mutual capacitance at 800 Hz

Maximum individual: 64 nF/km.

For cables of equal or more than 20 pairs:

maximum average: 55 nF/km.

cables of low level mutual capacitance (42 nF/km)

are also available

Maximum capacitance unbalance at 800 Hz in pF per 500 meters length of cable

	Individual value	e (pF)	95% values (j	oF)
	0.4, 0.5 & 0.6 mm	0.8 mm	0.4, 0.5 & 0.6 mm	0.8 mm
Pair-to-pair	250	160	150	100
Side-to-side	800	500	500	300
Pair-to-earth		1700		1000
Side-to-earth		1700		1000

Maximum calculated attenuation at 800 Hz and 20°C

Ø 0.4 mm
 Ø 0.5 mm
 Ø 0.65 mm
 Ø 1.43 dB/km
 Ø 0.65 mm
 I.11 dB/km
 Ø 0.9 mm
 O.81 dB/km

AERIAL NETWORK CABLE USED IN DISTRIBUTION

Foam skin Polyethylene insulated - Double steel tape armoured Polyethylene sheathed - Steel messenger (maximum average mutual capacitance 55 nF/Km)

Nomin		Usual number	Approx. cable core	she	ninal ath		enger	Nom. outer	Nominal lineic	Usual nominal
of pairs	diameter (mm)	of spare pairs	diameter (mm)	(m	eness m) Outer	Nbr.X dia.	Mini. break load (daN)	dimension hght. X dia. (mm)	weight (Kg/Km)	delivery length (m)
10 20 30 50 70 100 150 200	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0 0 0 1 1 2 3 4	5 6 8 10 11 13 16	1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.5 1.8 1.8	7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	670 670 1190 1190 1190 1190 2110 2110	20 X 12.0 22 X 13.5 24 X 14.8 26 X 17.0 28 X 18.6 30 X 21 35 X 25 28 X 28	249 304 389 489 575 695 975	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0 0 0 1 1 2 3 4	5 7 8 11 13 15 19 21	1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.8 1.8	7 X 0.9 7 X 0.9 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6	670 670 1190 1190 1190 1190 2110 2110	21 X 12.7 23 X 14.3 25 X 15.8 27 X 18.2 29 X 21 33 X 24 37 X 27 41 X 30	267 347 448 575 695 890 1220 1510	1000 1000 1000 1000 1000 1000 1000 100
10 20 30 50 70 100 150 200	0.65 0.65 0.65 0.65 0.65 0.65 0.65	0 0 0 1 1 2 3 4	6 9 10 14 16 19 23 27	1.5 1.5 1.5 1.5 1.5 1.8 1.8	1.5 1.5 1.5 1.5 1.8 1.8 1.9	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 1.6	1190 1190 1190 1190 2110 2110 2110 2110	23 X 13.9 25 X 16.0 27 X 17.8 30 X 21 35 X 24 39 X 28 43 X 32 47 X 36	359 465 565 765 1030 1330 1770 2180	1000 1000 1000 1000 1000 600 600 600
10 20 30 50 70 100 150	0.9 0.9 0.9 0.9 0.9 0.9	0 0 0 1 1 2 3	9 12 14 19 22 26 32	1.5 1.5 1.5 1.5 1.8 1.8	1.5 1.5 1.5 1.8 1.8 1.9	7 X 1.2 7 X 1.2 7 X 1.2 7 X 1.6 7 X 1.6 7 X 1.6 7 X 2.0	1190 1190 1190 2110 2110 2110 3300	25 X 16.1 18 X 19.1 31 X 22 37 X 27 41 X 31 46 X 35 53 X 41	463 650 830 1270 1630 2130 3000	1000 600 600 600 600 600 600

 $^{{\}color{red} \star} \ O ther \ conductor \ gauges, \ mutual \ capacitances, \ different \ pair \ count \ cables \ and \ different \ delivery \ lengths \ are \ also \ available$

Typical conditions of laying:

Maximal distance between the supports (span): 50 m.

Nominal sag for a 50 m span at 15°C without overload: 0.66 m.

security coefficient > 3 in the following extreme climatic conditions:

Hypothesis A: 100 km/h wind speed (pressure: 480 pa) at 15°C.

Hypothesis B: 60 km/h wind speed (pressure: 180 pa) - 10°C without ice.

security coefficient > 2 in the following extreme climatic conditions:

Hypothesis C: ice sleeve of 5 mm thickness at - 10°C without wind.

INDOOR USE TELEPHONE CABLES USED FOR TELEPHONE EXCHANGES, SWITCHBOARD & PRIVATE TELEPHONE

Specification: PVC insulated Based on IEC 60189-1/2 PVC sheathed

Types and Applications

LIBTEL Indoor surface and conduit wiring
LIBTLV Switchboard cable, tinned conductors

LIBTLS Screened

LIBTLA Armoured for use where mechanical stresses are encountered

CONSTRUCTION

Conductors

Copper 0.5 - 0.6 mm diameter bare or tinned.

Insulation

PVC coloured in the mass with surface ring marking for identification.

Twisting

Pair or other as request.

Stranding

Concentric including earth continuity insulated tinned wire, protected with overlapped non-hygroscopic tape.

Identification of conductors: see annex B.

Moisture barrierand screen

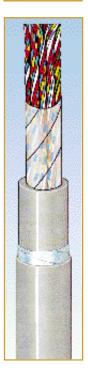
(S - type) Aluminium foil applied with overlap.

Armour

(A - type) double steel tape applied on inner PVC sheath.

Outersheath

Grey PVC: A rip cord is laid up under the sheath for easy stripping.


LIBTEL

LIBTLS

LIBTLA

Usual electrical characteristics

Loop resistance at 20°C in direct current, max

0.5 mm diameter	195.6	ohm/km
tinned	202	ohm/km
0.6 mm diameter	135.8	ohm/km
tinned	139	ohm/km

Mutual capacitance at 1000 Hz

Maximum: 120 nF/km.

Insulation resistance min. $500 \,\mathrm{M}\Omega$.km

INDOOR USE TELEPHONE CABLES

PVC insulated and PVC sheathed

	Type L LIB	IBTEL TLV	Type LIBTELS		Type LIBTELA			
Nominal number of pairs	Nominal Overall diameter (mm)	Net weight kg/km	Nominal Overall diameter (mm)	Net weight kg/km	Nominal Overall diameter (mm)	Net weight kg/km	Standard Packing	Delivery length m
		C	ONDUCTO	OR DIAME	TER 0.5 m	m		
1 2 3	3 4.2 4.5	11 22 27	3.8 4.8 5.1	20 28 34	 	 	C C C	100 100 100
4 5 6	4.9 5.2 5.3	32 37 41	5.4 5.8 5.9	40 46 50	 	 	C C C	100 100 100
7 8 9	5.5 5.7 5.9	46 51 55	6.1 6.6 6.7	56 67 70	 	 	C C C	100 100 100
10 15 20	6.4 7.7 8.6	67 100 118	6.8 8 8.8	72 105 131	10 10.5 11.5	172 208 245	D D D	500 / 1000 500 / 1000 500 / 1000
25 30 40	9.5 10 12	151 176 236	9.6 10.5 12.5	157 182 243	12.5 13 14.5	280 314 394	D D D	500 / 1000 500 / 1000 500 / 1000
50 70 100	13 15 17.5	273 387 510	13.5 15 17.5	299 397 555	16 17.5 21	463 585 770	D D D	500 / 1000 500 / 1000 500 / 1000

Standard Packing: C: Coils

D: Drums

Other Sizes are also available

Application

These cables are intended for inside distributing frame jumper wiring

Types

JW PVC insulated

JWV tinned copper wire, PVC insulated JWN PVC insulated, nylon jacketed

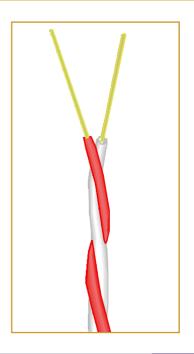
JWVN same as JWN but with tinned conductor

CONSTRUCTION

Conductor

Solid, annealed, bare or tinned copper wire, diameter 0.5 mm.

Insulation


PVC coloured for identification.

Jacket

(type JWN and JWVN) abrasion resistant nylon.

Stranding

Two to five conductors twisted together.

Electrical characteristics at 20°C	
Conductor resistance : max 92 Ω / km Insulation resistance : min 1000 $M\Omega$ / km	

DIMENSIONAL CHARACTERISTICS

	Type .	JW/V	Туре	Type JWN		
Number	Overall	Net	Overall	Net	Delivery length (coils) m	
of	diameter	weight	diameter	weight		
conductors	(mm)	kg/km	(mm)	kg/km		
	C	ONDUCTOR D	IAMETER 0.5 m	m		
1	1.1	3.0	1.1	2.8	500	
2	2.2	6.0	2.2	5.7	500	
3	2.4	9.0	2.4	8.5	500	
4	2.7	12	2.7	11.5	250	
5	3.0	15	3.0	14.0	250	

1 DROP WIRE

Application

These cables are intended for connecting telephone aerial cable to the subscriber's premises

Types

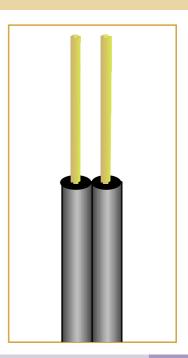
DWIRE Hard copper conductor, PE jacketed
DWIREY Hard copper conductor, PVC jacketed

CONSTRUCTION

Conductor

Hard copper wire

Laid-Up


The two conductors are laid-up parallel and jacketed. A ridge is longitudinally extruded along one edge for conductor identification

Jacket

DWIRE type: Black polyethylene type

2 C to BS 6234

DWIREY type: Hard PVC tightly adhered to the conductor type 2 to BS 6746

Electrical cl						
Conductor resistance, max.						
- Hard drawn copper	$\begin{array}{ccc} 0.8 \text{ mm diameter} & 35.0 & \Omega / \text{km} \\ 0.9 \text{ mm diameter} & 28.0 & \Omega / \text{km} \\ 1.0 \text{ mm diameter} & 24.0 & \Omega / \text{km} \end{array}$					
Insulation resistance, 1 - PE jacketed - PVC jacketed	min. 5000 MΩ.km 100 MΩ.km					

DIMENSIONAL CHARACTERISTICS

Туре	Copper Conductor diameter mm	Jacket nature	Overall dimensions width x height mm	Net weight kg/km	Delivery length (coils) m
DWIRE	0.8	PE	2.6 X 5.7	20	500
	0.9	PE	2.7 X 5.9	23	500
	1.0	PE	3.0 X 6.5	28	500
DWIREY	0.8	PVC	2.6 X 5.7	24	500
	0.9	PVC	2.7 X 5.9	27	500
	1.0	PVC	3.0 X 6.5	33	500

IDENTIFICATION OF CONDUCTORS AND UNITS AND CABLE CORE CONSTRUCTION OF UNDERGROUND AND AERIAL NETWORK CABLES

(any other combination remaining also available on request)

Identification of conductors

Pain Nº	Colourof	insulation	Pair Nº	Colourof insulation		
	Cond. A	Cond. B		Cond. A	Cond. B	
1	White	blue	6	red	blue	
2	White	orange	7	red	orange	
3	White	green	8	red	green	
4	White	brown	9	red	brown	
5	White	grey	10	red	grey	

sub-unit of base (10 pairs)

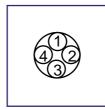
Identification of basic sub-units, construction of 50 and 100 pair units, and cable cores of up to 100 pairs

20 pairs

30 pairs

50 pairs

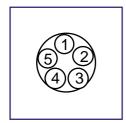
70 pairs

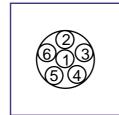


100 pairs

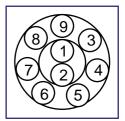
Identification of basic units and cable core constructions for cables of more than 100 pairs - Numbered units

150 pairs (3 x 50p)

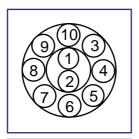

200 pairs (4 x 50p)


300 pairs (6 x 50p)

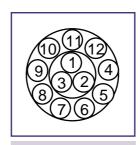
400 pairs (8 x 50p)


500 pairs (5 x 100p)

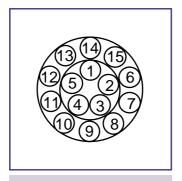
600 pairs (6 x 100p)

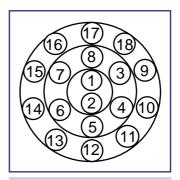


800 pairs (8 x 100p)

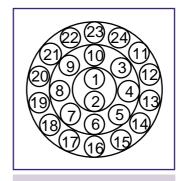


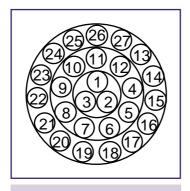
900 pairs (9 x 100p)

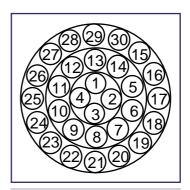

Identification of basic units and cable core constructions for cables of more than $100~\rm pairs$ - Numbered units (continuation)


1000 pairs (10 x 100p)

1200 pairs (12 x 100p)


1500 pairs (15 x 100p)


1800 pairs (18 x 100p)


2100 pairs (21 x 100p)

2400 pairs (24 x 100p)

2700 pairs (27 x 100p)

3000 pairs (30 x 100p)

${\bf Identification\ of\ conductors\ \ in\ Indooruse\ telephone\ cables\ -\ LIBTEL}$

Pair		Colorcode	
N°	WireA	Wi	re B
	WHEA	Basic	Ring
1	Red	White	_
2	Blue	White	
3	Yellow	White	
4	Green	White	
5	Black	White	
6	Red	White	Red
7	Blue	White	Red
8	Yellow	White	Red
9	Green	White	Red
10	Black	White	Red
11	Red	White	Blue
12	Blue	White	Blue
13	Yellow	White	Blue
14	Green	White	Blue
15	Black	White	Blue
16	Red	White	Yellow
17	Blue	White	Yellow
18	Yellow	White	Yellow
19	Green	White	Yellow
20	Black	White	Yellow
21	Red	White	Green
22	Blue	White	Green
23	Yellow	White	Green
24	Green	White	Green
25	Black	White	Green
26	Red	White	Black
27	Blue	White	Black
28	Yellow	White	Black
29	Green	White	Black
30	Black	White	Black
31	Red	White	
32	Blue	White	
etc			

- Color of insulation of 1 triad

Wire A: Blue Wire B: White Wire C: Red